

NIRS Programs That Give Accurate Data for Selections, Science and Marketing

Charles R. Hurburgh
Professor, Agricultural Engineering
February 13, 2017

Why NIRS Works

Electromagnetic spectrum

• What is so special about the waves in NIR range?

NIR light is absorbed by molecules containing C-H, N-H, and O-H groups (fats, proteins, carbohydrates, organic acids, alcohol, water)

NIRS reflectance spectra and absorption

Important	absorptions	and	their	tentative	
assignment* for food constituents					

Wavelength (nm)	Constituent	Assignment C—H	
1200	Lipid		
1440	Water and carbohydrates	О—Н	
1730	Lipid	С—Н	
1780	Lipid	С—Н	
1940	Water	О—Н	
1980	Protein	N—H	
2080	Carbohydrates	О—Н	
2180	Protein	C=O, N-H	
2320	Lipid	С—Н	
2350	Lipid	С—Н	

$$\hat{Y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

k = 10 - 2000

Major components (> 2%)

large effects

Subcomponents: (<2%)

smaller effects

NIRS Operation Procedure

IOWA STATE UNIVERSITY Extension and Outreach

~1-2%

(obtained by standard wet chemistry methods)

First, what is the goal?

Accuracy Needs

Classification/selection

2-3

- Accept reject, ranking
- ______
- Market Information

- 3-5
- Guidance, relative comparisons, databases
- Trade, specification, refereed science 5+
 - Payments, decisions, citable, future work

Know how much variability will be acceptable.

Accuracy in terms of RPD (std. dev. of data/std error of acc.)

IOWA STATE UNIVERSITY Extension and Outreach

Next, instrument choice

- How much time do you have per test?
- Could you grind, or not? Destructive, slow but more accurate for reflectance units.
- What technology would work best for each case?

NIRS Transmission-Based Units

NIRS Reflectance-Based Units

IOWA STATE UNIVERSITY

Extension and Outreach

Next: Where are you in the operation chain?

- Are you going to accept a calibration that you get from somewhere? Or do your own? What specific calibration is it?
 - Manufacturer
 - Other developer?
 - Calibration version/identification; scientific publication?
 - Update/monitoring protocol
- Are you going to standardize your own instrument? Or accept the standardization settings you are given?
- What is the reference basis of the calibration? Is that widely accepted in your market/application?
- Validation is totally your responsibility
 - Proficiency program?
 - Quality management program?

IOWA STATE UNIVERSITY

Extension and Outreach

Measurement Statistics

- Repeatibility (Precision)
 - –Standard deviation across repeat tests *Instrument construction*
- Reproducibility within model (aka.
 Standardization)
 - -Standard deviation across like units Instrument uniformity
- Equivalence across models (aka. Harmonization)

Reference Method Differences Oil in Canola

Reference Lab Performance Protein in DDGS

Same instrument and spectra, different lab values

IOWA STATE UNIVERSITY Extension and Outreach

Precalibrated Units

Same instrument and spectra, different calibrations

IOWA STATE UNIVERSITY Extension and Outreach

Validation – Classification

No difference within classes; classes separated

SEP = 1.30

SEP = 0.75

Soybean Amino Acids versus Crude Protein

Iowa State University Soybean Quality Database, n=1875 Reference Chemical Values only

IOWA STATE UNIVERSITY

Extension and Outreach

Correlated Y: Amino Acids

Comparison of NIR calibration models (average *r2*) with linear regressions of reference amino acids to reference protein

Regression vectors of 18 AA PLS models for FOSS Infratec 1241 Grain Analyzer; most of the curves follow the same pattern, which indicates that calibrations predict one constituent.

Wavelength, nm

Platform Differences - Equivalence

DuPont, ISU Infratec Corn Oil Calibrations Comparison

Comparison of DuPont, ISU Corn Oil Calibrations for Infrate o

Equivalence among well calibrated units

Protein NIR D vs NIR C 2005 Soybeans 50.0 NIR C Protein @13% MB 45.0 y = 1.0127x - 0.9198 $R^2 = 0.9075$, SD = 1.13 40.0 35.0 30.0 25.0 25.0 30.0 35.0 45.0 50.0 40.0 NIR D Protein

Similar technology (transmittance) SEP to reference =0.50,0.45

Reflectance vs. Transmittance SEP to reference = 0.50, 0.75

It all depends on the

IOWA STATE UNIVERSITY
Extension and Outreach

NIRS Proficiency Data for Soybeans

Mean	Range	Standa	ard deviation		
	Between-Laboratory Within-Laboratory				
	(Equivalence)	(Re	eproducibility)		
			-Protein, percent dry basis		
39.81	38.1 – 41.3	2.00	1.25		
(34.63 @	@13%M)				
			Oil, percent dry basis		
21.32	19.3-24.6	1.68	0.85		
(18.55 @	@13%M)				

AOCS SQT program, 2008 – 2010, 39 labs, 65 samples

IOWA STATE UNIVERSITY Extension and Outreach

NIR Equivalency Study – Cooperative Agreement

- Initiated in 2014. GIPSA and Iowa State University (ISU)
- Limited to models with NTEP Certificates of Conformance
- Criteria on a common sample set
 - 1) Precision and 2) SEP are acceptable

Perten IM9500

Bruins OmegAnalyzerG

FOSS Infratec 1241

Study Description

Std. (n) **Test** (n)

From GIPSA, GIPSA reference data

- Wheat 6 250 6 classes Protein 12%MB
- Barley 5 100 2 classes Protein DB (0%)

From Iowa State, Eurofins reference data

- Soybeans 20 145 1 class Protein, Oil 13%MB
- Corn 30 149 1 class Protein, Oil DB (0%)

644*3*5*3reps 28,980 drops!

First Consideration

• Is the hardware (design) precise?

Yes

• All meet NTEP Criteria;

Second Consideration

- Are the calibrations accurate to the reference method?
 - Close: Soybean protein could be improved by including newer varieties and more widely distributed results.

Third Consideration

Is the agreement within and between models (equivalence) acceptable? Yes by NTEP; No by GIPSA/ISU definition.

Strengthening (USB) NIRS Programs

- 1. Each user must understand their own goals and needs.
- 2. Each user must determine what instrument fits best
 - 3. Each user must determine what their role(s) will be.
 - 4. Establish approved, validated reference labs. GIPSA for Official factors, or proven equality.
 - New factors: scientific review then lab approval.

Strengthening (USB) NIRS Programs

 Expect scientific proof at each operation that others do.

The platform concept is critical: instrument+calibration

2. Participation in proficiency programs should be required

This will reduce equivalency issues.

Create a program for sb users; connect with GIPSA

- 3. Calibration/validation accuracy should be published.
- 4. Create Standards for inclusion of data in databases, public information.

International Diffuse Reflectance Conference 2018

July 29—August 2, 2018. Focus is on usage in practice. IOWA STATE UNIVERSITY

Where To Find Us...

www.iowagrain.org

Analytical Programs
Quality Management
Systems

IOWA STATE UNIVERSITY

Extension and Outreach