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Nebraska Irrigated and Rainfed Soybean Yield Trends 1960 to 2012
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*%*%*%**There are three seed vield penalties associated with an insufficient seasonal water supply*****

Less absolute yield; slower annual rise in on-farm yield; greater year-to-year variation in yield.
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Rainfall Amounts versus Crop Water Use@
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Plants and Water

An acre-inch of water (rainorirrigation) is 27,154 gallons of water spread over
43,560 square feet (= one acre). There are 16 cups to the gallon.

A soybean crop (125,000 plants per acre) producing 70 bushels of seed per acre at
the end of a 140-day growing season may require about 20 acre-inches of ET,
which is 20 x 27,154 = 543,080 gallons per acre, and all of the Transpiration in ET
comes from water gathered from moist soil zones by the plant’s root hairs. Note:
4.34 gallons (70 cups) per plant for the entire 140 days. At peak crop water use
(0.3 ac-in/day) one cup per plant per day!

The (recommended) average human DAILY water intake is ONE gallon, so
543,080 gallons of water would also constitute a 140-day supply of daily drinking
water for 3,880 humans.

Los Angeles has a population density of 11 humans per acre (i.e., one person per
4,000 sq ft). For these 11 humans, the amount of 543,080 gallons of water
would constitute a 135-year supply of daily drinking water.




A water tower in a small town holds about 300,000 gallons of water




Brian Diers’ Home Town




Photosynthesis >
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During the time it takes for 1 CO, molecule to pass thru an open stomatal pore,

For a sunlit soybean leaf (C3 type of photosynthesis):

400 H,O molecules simultaneously escape from that same pore !!!!

Plants must thus exchange 164 1bs of H,0 to acquire 1 1b of CO,

(~6.1g CO, per 1000g H,O )
Source: Park Nobel. 2009. Physicochemical and Environmental Plant Physiology (4% Ed.)
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Carbon Dioxide & Vegetation

 The evolution of C4 photosynthesis is considered
to be a response to low atmospheric CO2 levels.
Rapid expansion of the C4 species (mechanism
and anatomy) occurred about 7 million years ago.

* Doubling the concentration of CO2 from 180 to
360 ppm halved transpiration vs. photosynthesis.
Stated in another way, doubling of the CO2
concentration was like “doubling the rainfall as
far as plant water available is concerned”

Source: G.D. Farughar, 1997, Science 278:1411.




Annals of Botany 76: 389-395, 1995

Stomatal Density and Index of Fossil Plants Track Atmospheric Carbon Dioxide
in the Palaeozoic

JENNIFER C. MCELWAIN* and WILLIAM G. CHALONERY

*Department of Biology and tDepartment of Geology, Royal Holloway, University of London, Egham,
Surrey TW20 OEX, UK

Received: 20 February 1995 Accepted: 6 June 1995

It has been demonstrated that the leaves of a range of forest tree species have responded to the rising concentration
of atmospheric CO, over the last 200 years by a decrease in both stomatal density and stomatal index. This response
has also been demonstrated experimentally by growing plants under elevated CO, concentrations. Investigation of
Quaternary fossil leaves has shown a corresponding stomatal response to changing CO, concentrations through a
glacial-interglacial cycle, as revealed by ice core data. Tertiary leaves show a similar pattern of stomatal density
change, using palynological evidence of palaeo-temperature as a proxy measure of CO, concentration. The present
work extends this approach into the Palaeozoic fossil plant record. The stomatal density and index of Early Devonian,
Carboniferous and Early Permian plants has been investigated, to test for any relationship that {hey may show with
the changes in atmospheric CO, concentration, derived from physical evidence, over that period. Observed changes
in the stomatal data give support to the suggestion from physical evidence, that atmospheric CO, concentrations fell
from an Early Devonian high of 10-12 times its present value, to one comparable to that of the present day by the
end of the Carboniferouns. These results suggest that stomatal density of fossil leaves has potential value for assessing
changes in atmospheric CO, concentration through geological time. © 1995 Annals of Botany Company
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Water Vapor Mixing Ratio (ppmv)

A useful measure of the amount of water vapor in the air is the mixing ratio, r,
which is defined as: r = mv/md where mv = mass of vapor and md = mass of dry air.

Source: Dessler et al. (2013) Stratospheric water vapor feedback, Proc. Natl. Acad. Sci., 110:18,087-18,091.
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As the lowest layer of the atmosphere, called the troposphere (surface to ~17 miles in the middle latitudes),
is warmed, the air there becomes more humid. With greater humidity, there is greater (global) precipitation
and thus more clouds!
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For a sunlit soybean leaf (C3 type of photosynthesis):

During the time it takes for 1 CO, molecule to pass thru an open stomatal pore,

400 H,O molecules simultaneously escape from that same pore !!!!

Plants must thus exchange 164 1bs of H,0 to acquire 1 1b of CO,
(~6.1g CO, per 1000g H,O )

Source: Park Nobel. 2009. Physicochemical and Environmental Plant Physiology (4% Ed.)




Some Key Papers That Influenced My Research
Thinking/Focus Relative to Transpiration and WUE
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Bioscience 34:36-40.
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Crop Productivity and Water Scarcity

Passioura, J.B. 1977. Grain yield, harvest index, and water use of wheat.
J. Aust. Inst. Agric. Sci. 43: 117-120.

* Seed yield (SY) in water-limited environments is
effectively a function of three largely independent
entities: water-use efficiency (WUEpn),

(T), and harvest index (HI).

BMY = ( WUEpm x T ) ly

SY = ( WUEpm x T ) x HI

kg Seed / ha = A kg BM / A kg Water
X

x kg Seed fraction / kg BM




Relative Crop Biomass (BM)

1

WUE = change in crop mass per unit change in crop transpiration

— Biomass =T x WUE, C
Seed Yield = BM x HI 4
Seed Yield = (T x WUE,) x HI | «——
Let WUE, = (WUE, x HI)
- Seed Yield=T x WUE,
0

Relative CropTranspiration (T)

- 0.5

0.0

Relative Crop Seed Yield (Y)



“In conclusion, the inescapable fact is that
crop production is inextricably linked to crop
transpiration. To increase crop biomass
production, more water must be used in

transpiration”

Sinclair et al. 1984. Water use efficiency in crop production. Bioscience 34:36-40.



Some water is

used for
photosvnthesis

But much more water
simply exits the leaf via
open stomatal pores
(transpiration!)

The transpiration stream
pulls water up the stem

How can we improve the
ability of the plant root
system to supply enough
water to keep those
stomates OPEN!

Water
enters the
root hairs
by osmosis




Photosynthesis >
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Plants can partially close their stomatal pores
to reduce the outflow of H20 (transpiration),
but that closure simultaneously results in less
inflow of CO2 (and thus less photosynthesis).

Soybean varieties selected for a less wide open stomatal pore each day (or earlier closure when

the number of days between rainfall events widen) are called “water-conservers”, but less wide

pores allow less CO2 in the leaf for photosynthesis, so they are also “slow-growers”. (Less RUE)




Breeders selecting for greater yield have generated ever-higher-yielding new variety releases whose
stomatal pores are generally wider open (during the day) than prior releases. This finding is consistent
with the fact plants must exchange water for carbon dioxide, thus inextricably linking high yields with
open stomates so long as enough water is available for transpiration when the pores are open!

Pima cotton (Arizona)
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Web Figure 26.1.A Stomatal conductance has increased in parallel with agronomic yields in irrigated Pima
cotton (Gossypium barbadense) selected for higher yields at a high temperature. The figure shows the
relationship between lint yield and stomatal conductance in a historical series of Pima cotton grown in Arizona.
The abbreviations P32 and PS-1 through PS-7 designate successive commercial releases between 1949 and

1996. (From Lu et al. 1998.)

Source: http://5e.plantphys.net/search_result.php?search_in=all&term=stomatal+conductance



Ditto!

Bread wheat (Ciudad Obregén,

Mexico) HE
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Web Figure 26.1.C The relationship between grain vield and stomatal conductance in a historical series of

semidwarf bread wheat grown in Ciudad Obregon, Mexico. The abbreviations H1 through H8 designate
successive commercial lines released by the International Maize and Wheat Improvement Center between
1962 and 1988. (From Lu et al. 1998.)

Source: http://5e.plantphys.net/search_result.php?search_in=all&term=stomatal+conductance



But if there is not enough water to keep stomates open, then.......




Leaflet inversion began when leaf water potential
was -1.4 MP and was associated with a greater
than 60% depletion of plant available soil water.

(abaxial)

TERMINAL
DIRECTION OF

R LATE Ty MOVEMENT WITH
INCREASING WATER

ANGLE MEASURED STRESS

(leaf blade to horizontal)
_________________ HORIZONTAL _
LINE

LEAFLET PULVINUS

LEAFLET PETIOLE /

Fig. 1. Representation of a terminal soybean leaflet showing the
leaflet, pulvinus, angle measured, and direction of leaflet
movement with increasing water stress.

Source: Oosterhuis et al. (19xx) Crop Sci. 25:1101-1106



Some water is

used for
photosvnthesis

But much more water
simply exits the leaf via
open stomatal pores
(transpiration!)

The transpiration stream
pulls water up the stem

How can we improve the
ability of the plant root
system to supply the water
needed to keep those
stomates OPEN!

Water
enters the
root hairs
by osmosis
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Soybean Root Development Relative to Vegetative
and Reproductive Phenology

Jessica A. Torrion, Tri D. Setiyono, Kenneth G. Cassman,
Richard B. Ferguson, Suat Irmak, and James E. Specht*

ABSTRACT Agron. J. 104:1702-1709 (2012)

Knowledge of soybean [Glycine max (L.) Merr.] primary, secondary, and tertiary root tip locations in the soil vs. seasonal time
would enhance modeling of soybean development. The seasonal progression of root tip development and shoot phenology was
evaluated in situ using an imaging device inserted into minirhizotron tubes installed in the soil at an in-row 30° angle. Primary
root tip extension was linear (i.e., 1.5 and 1.2 cm d~! each year) until the full-seed stage. Emergent 5-mm secondary roots were
routinely detected about 10-cm above the primary root tip, and thus present in a soil layer 11 d after the primary root tip had
passed through that layer. Secondary roots followed a similar temporal pattern. Primary root tip location in the soil paralleled
a 17°C soil temperature isoline. The 3.7-d phyllochron of main-stem node accrual between first node and seed fill may be a

calibratable proxy for inferring correspondent root tip depths.
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T4 (Non-Irrigated) Rainfed Treatment — Soy Drip Irrigation Experiment
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According to Irmak et al. (2006), the inches of soil water depletion per foot associated with a given soil matric potential for a Sharpsburg Soil are:
0-20cb=0in; 33cb=0.20in; 50cb=0.45in; 60cb=0.50in; 70cb=0.60in; 80cb=0.65in; 90cb=0.70in; 100cb=0.80in; 150cb=0,90in; 200cb=1.00in.
And in the same soil type, the allowable soil water depletion per foot of soil root depth are 1.4 for 1.5ft; 1.8 for 2.0ft; 2.2 for 2.5ft; 2.7 for 3.0ft.
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Crop Water Productivity
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Fig. 1. Relationship between wheat yield and water use from experiments conducted by French and Schultz (1984). The points represent yields
measured in experiments conducted over many seasons and locations. The line represents the highest transpiration efficiency (TE) observed,
and the intercept on the abscissa represents soil evaporation (E,). The vertical lines join data points representing different crop management
treatments at a single experiment.

Source: Angus, JF and AF van Herwaarden. 2001.
Increasing water use and water use efficiency

in dryland wheat. Agron. J. 93:290-298.



Sadras, VO and JF Angus. 2006.

Benchmarking water-use efficiency
of rainfed wheat in dry environments.

Water Productivity Limit:
- It likely will be difficult
to move data points

beyond this boundary e Mosternonn Gadn

O North American Great

without extraordinary Plains

V. O. Sadras and I. F. Angus

SE Australia
physiological alteration 0.002 x (ET-60)
of the crop to improve
its CO2 to H20 exchange
ratio (i.e., yield-to-water 3 .
response limit). — o °

.
0 200 400 6(')0

Evapotranspiration (mm)

Fig. 5. Scatter plot of grain yield and seasonal evapotranspiration
in 4 mega-environments. The line uses French and Schultz (1984a)
frontier concept, with x-intercept =60 mm (Sadras and Roget 2004)
and slope = 22 kg grain‘ha.mm (Angus and van Herwaarden 2001).

Aust. J. Agr. Res. 57:847-856

Water Productivity Limits?

Corn: 11.0 bu ac? ac-in?

Soy: 3.39 bu ac?! ac-in!

W =k (ET — Es)/(e* - e), where W = grain yield (kg/ha), ET = evapo-transpiration (mm), Es = soill
evaporation (mm), e* and e = saturated and actual vapor pressure (kPa), and k = a crop specific
constant (kPa/mm). ET axis values reflect the difference between the soil water content in the crop
root zone at emergence and at physiological maturity, plus the sum of all rainfall during this period.
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Source: Patricio Grassini et al.
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SY = (WUEb x HI) x T (Passioura, 1977) [ let WUEy = WUEDb x HI |

Water Insufficiency Point Crop Yield Maximum
Initial Slope = Water Use Efficiency (WUEY)
/v WUEYy = Beta = A seed yield / A water

A

A Yield Potential
A

=)

p—(

o>
© puy(

s When water is a variable but limiting resource, a
g given genotype will have an (initially) linear yield-
P to-water response whose slope is the coefficient
< = [ b in the linear regression of seed yield on water:
S3 Y=bW+a

- where b = genotype’s Beta =WUEy

O g

<
\ T~ » SY=(Beta)*W + a (Specht et al., 1986)
.+ A seasonal water
" Water (available for crop transpiration) >>

Keep in mind that this yield-to-water response curve is specific for the above (reference) genotype;
its WUE will initially be constant, but will eventually decline on approach its yield maximum (plateau):




Seed Yield Phenotype (P) = Genotype (G) + Water Environment (W) + Interaction (G x W).
Useable G x W arises when genotypes have consistent differing yield response-to-water slopes (see below).
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Table 1. Variation in hybrids for drought tolerance

The Usual Viewpoint

The Case in Corn

Hybrid Irrigation Drought Yield Loss
Stress from Stress
Drought Type: - - Grain Yield (‘bll/a(‘re) --
T

Tolerant Low WUE

N, >
Check "fl | -57

. 30 l 31

Intermediate ‘ High WUE v
Check @ e
Susceptible

22 20/

Pioneer — Crop Insights 16:1-5 (2006)
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Table 1. Variation in hybrids for drought tolerance

Producer’s Viewpoint

The Case in Corn

Hybrid Irrigation Drought - :
Stress iilmlli
Drought Type: - - Grain Yield (bu/acre) - -
T
Tolerant Low WUE
. 771 <«

Check "Tl +57|

. 30 l 31
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Pioneer — Crop Insights 16:1-5 (2006)



Quantitative genetic theory provides an explanation for the positive correlations
often reported between (stability) regression coefficient value and mean
productivity; a line with high tolerance to stress would normally have a low
regression coefficient stability.

Selection for mean productivity will generally increase mean yields in both
stress (Ys) and non-stress (Y) environments.

Selection for tolerance to stress (minimize Y — Ys) will generally result in a
reduced mean yield in non-stress (Y) environments and (thuse coincidently)
decreased mean productivity.

Stress tolerance (i.e., less difference: Y — Ys) and mean productivity [(Yns + Y) / 2]
show negative genetic correlations, when the genetic variance in the stress (Ys)
environments is less than the genetic variance in the non-stress (Y) environments.

Rosielle and Hamblin (1980)
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U.S. MG Genetic Improvement Over Time
Regression of Yield on Year Higher & Faster
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Stability Analysis

Yleld Stability Coefficient
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U.S. MG Genetic Improvement Over Time

Genetic Yield Gain Rates Measurably Greater in Higher Yield Fields
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The Final Frontier?

Plants must exchange water for carbon. The parameter WUE is, in fact, the
exchange coefficient. The relationship between crop biomass (BM) accumulation
or seed yield (SY) and cumulative crop transpiration (T) is defined by the well-
known linear conceptual equation of Passioura (1977): SY = WUE, x T x Hl or that
of Specht (1986, 2001): SY = WUE x T

A greater WUE ensures more carbon gain per unit of water transpired (i.e., “more
crop per drop”), but the above equations also shows that more (not less) seasonal
T is also required to more produce food, fibre, and biofuel (Sinclair et al. 1984)

Breeders selecting for greater SY have certainly improved HI and have also
steepened yield beta (WUE,). Any further substantive future improvement in
Soybean WUE would require a biotechnological conversion of the soybean from a
C3 to a C4 form of photosynthesis!

Genetic improvement in soybean SY could possibly be achieved by genetic
modification of the root system to enable the plant to gather plant available soil
water that is not used each season (i.e., increase seasonal T in above equation).

Sustainable improvement in crop yield, by definition, should result in the crop
transpiring, during each growing season, ALL of the annually rechargeable,
available soil water by season end.
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Thanks for Your Attention!
Any Questions?

Some Notable Quotes from Yogi Berra:

The future just ain't what it used to be.

| never predict the future and I predict I never will.

We're lost, but we're making good time.

In theory, there is no difference between theory and practice,
but in practice, there is.







