

Larry C. Purcell & Ryan Van Roekel University of Arkansas & DuPont Pioneer

Soybean Breeders Workshop, February 18, 2014

Outline

- Introduction
 - Framework for increasing seed number and seed size
- Research in Mr.
 Cullers' contest field
- Small plot research at Fayetteville

Framework for determining seed number and seed size

Yield (g m^{-2}) =

- seed number (seed m⁻²) x
- average seed mass (g seed⁻¹)

Hypothesis:

- seed number is determined during flowering and pod formation and is limited by sugars produced during photosynthesis
- average seed mass is determined by the duration of the seed fill period and is limited by nutrient availability.

Seed number – Charles Edwards model

Total crop growth rate during flowering early pod formation (g sugar m⁻² d⁻¹)

Fraction of total sugar partitioned to seed

Minimum amount of sugar per day needed to keep a seed from aborting (g sugar seed⁻¹ d⁻¹) Seed number

Seed size

Egli and Zhen-wen. 1991. Crop Sci. 31:439

Egli and Zhen-wen. 1991. Crop Sci. 31:439

Large seed number:

- high growth rates R1 to R5
- low seed growth rates

Large average seed size:

- low seed growth rates
- long seedfill period
- not limited by nutrition

How can we increase the size of this block of sugar?

- Match planting date and variety such that flowering begins before the solstice
- Manage row spacing and population density so that full light interception occurs at beginning flowering

Total crop growth during flowering early seed fill (g sugar m⁻² d⁻¹)

Outline

- Introduction
 - Framework for increasing seed number and seed size
- Research in Mr.
 Cullers' contest field
- Small plot research at Fayetteville

Current Yield Record

- Mr. Kip Cullers,
 Missouri Soybean
 Association
 - > 2006 **139** bu/ac
 - > 2007 **155** bu/ac
 - > 2008 **118** bu/ac
 - > 2009 N/A
 - > 2010 **161** bu/ac
 - > 2011 **109** bu/ac
 - > 2012 N/A
 - > 2013 **115** bu/ac

Cullers Management

- Rotates between two contest fields of Newtonia silt loam
- Perennial poultry litter applications
- Early planting
- Plant density
 ~140,000 plants/ac
- 9 inch twin rows on 30 inch centers with a Monosem planter

- Indeterminate Pioneer
 Hi-Bred varieties from
 4.2 5.1 RM
- Frequent (daily)
 overhead irrigation
 - Multiple seed treatments, herbicides, insecticides, fungicides, and others...

Research with Cullers

- Establish four plots within each variety
 - Radiation use efficiency
 - N accumulation rate
 - Seed growth rate and seed fill duration

Radiation Use Efficiency

- 3 biomass samples over time
- Weekly light interception
- Solar radiation measured at the field

Cullers Yield Results

2012

2013

- Severe heat and drought in 2012
- Late planting (May 27th) in 2013
- No supplemental fertigation

Van Roekel and Purcell. 2014. Crop Sci. (in press)

N Accum Rate & RUE

- N accumulation rate (NAR) with a full canopy
- Radiation use efficiency (RUE) during vegetative growth
- Both NAR and RUE are highest ever reported for soybean

Δ	4	
-/1		- 7
20		J

Variety	NAR	RUE
	$g N m^{-2} d$	⁻¹ g MJ ⁻¹
94B73	1.88 AB	508 lbs/ac/day
94Y80	1.66 AB	1.73 A
48T53	1.43 B	1.46 B
49T97	18 lbs N/ac,	/day L.89 A
50T40	2.07 A	1.80 A
5332	1.51 B	1.83 A

Van Roekel and Purcell. 2014. Crop Sci. (in press)

Seed Fill Duration

- Rate HI increase typically ≈ 0.013
- Typical seed fill for 30 to 35 days

Lower rates and longer durations:

- Prevent seed/pod abortion
- Minimizes demand on leaf proteins (N)

Planted April 11, 2012

		Seed Fill
Variety	DMAC	Duration
		(days)
94Y82	0.0088 B	56.9 A
94Y81	0.0100 AB	45.3 B
94Y92	0.0108 AB	39.7 B
94Y91	0.0111 A	40.9 B
95Y10	0.0111 A	40.6 B
·		

Seed Fill Duration

- Rate HI increase typically ≈ 0.013
- Typical seed fill for 30 to 35 days

Lower rates and longer durations:

- Prevent seed/pod abortion
- Minimizes demand on leaf proteins (N)

Planted May 27, 2013

	Rate HI	Seed Fill
Variety	Increase	Duration
	HI d ⁻¹	d
94B73	0.0082 D	45.8 A
94Y80	0.0138 A	34.0 C
48T53	0.0105 C	31.2 CD
49T97	0.0132 AB	28.8 D
50T40	0.0103 C	39.8 BC
5332	0.0111 BC	36.4 BC

Conclusions

- Early flowering and full light interception maximizes amount of photosynthate produced
- High N accumulation rate creates large pool of available N
- Long seed fill duration lessens photosynthate and N demand for each individual seed
 - All work together to increase seed (pod) number and seed weight

Outline

- Introduction
 - Framework for increasing seed number and seed size
- Research in Mr.
 Cullers' contest field
- Small plot research at Fayetteville

Max Yield Management

- Deep tillage ≥ 14 in.
- Early planting
- 18 inch rows
- 140,000 plants/ac
- N, K, & S fertigation
- Preventative fungicides
- Strict pest control

Max Yield Management - 2013

Season before:

11.1 Mg ha⁻¹ poultry litter

Prior to planting

- 11.4 Mg ha⁻¹ poultry litter
- 392 kg ha⁻¹ KCl
- $-280 \text{ kg ha}^{-1} \text{ K}_2\text{Mg}(\text{SO}_4)_2$
- $112 \text{ kg ha}^{-1} \text{ NH}_4(\text{SO}_4)_2$

During Season

- Irrigated 25x, 496 mm
- 178 kg ha⁻¹ N
- 40 kg ha⁻¹ K
- 11 kg ha⁻¹ S

Fayetteville 2012

Fayetteville 2013

Planted May 14th, 125,000 plants per acre

Treatments Evaluated

- P94Y81 and AG4907 in 2011-12
- P47T36 and AG4632 in 2013
 - Herbicide burn at V3
 - Kip's seed treatments
 - Thinned to even spacing or emergence

Burn Treatments, 2011-13

- Applied at V3
- Early morning with dew to increase injury
- Products & rates:
 - 0.5 oz/ac Aim + NIS
 - 0.9 oz/ac Cadet + NIS
 - 12.5 oz/ac Cobra + NIS
 - 12.5 oz/ac Cobra + 2% crop oil
 - 12.5 oz/ac Cobra + 0.5oz/ac Aim + 2% crop oil

Seed Treatments

- "Untreated" (came with fungicide/insecticide)
- Optimize 400 (2x rate)
 - Novozymes, Bradyrhizobium +
 lipo-chitooligosaccharide (LCO), "biological molecule stimulates cell division & growth"
- Bio-Forge
 - Stoller, N,N'-diformyl urea, "upregulate anti-oxidative pathways, reduce plant stress"
- Accolade-(P)
 - INTX Microbials, Azospitillum brasilense, free-living
 N₂ fixing bacteria
- Treated control all of the above

Seed Treatments, 2011-13

Conclusions

- Early planting & narrow rows to set pods
- Irrigation, fertility & pest control to keep pods
- Agronomy 101(variety, compaction, pH...)
- N₂ fixation most profitable
- Attention to detail & timing of everyday
 agronomics capable of 80 bu/ac (100+ with weather & luck)

Thank You

N Accumulation Rate

- Crop growth rate from biomass samples
- Analyzed for N concentration
- N content of biomass over time

RUE*Solar Radiation

- ■Unsworth et al. (1984)
- □Muchow (1985a;b)
- ◆ Sinclair et al. (1987)
- ♦ Leadley et al. (1990)
- ▲ Muchow et al. (1993)
- △ Sinclair and Shiraiwa (1993)
- Rochette et al. (1995)
- O Confalone et al. (1998)
- + Pengelly et al. (1999)
- Confalone and Dujmovich (1999)
- ×Kumudini et al. (2008)
- Souza et al. (2009)
- x Ries et al. (2012)
- ∇an Roekel and Purcell this report

Van Roekel and Purcell. 2014. Crop Sci. (in press)

