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The completion of reference genome sequences for many 
important crops and model plants has the potential to aid 
in the realization of the long-standing promise of plant 
genomics to dramatically accelerate crop improvement1. 
Since the late 1960s, it has been possible to survey molec-
ular markers across a plant genome2, but for decades the 
number of markers that could be readily assayed placed 
limits on the genetic resolution that could be achieved 
using either experimental or comparative genetic 
approaches. Only a few years ago, the highest-density 
genetic maps required the laborious assay of several thou-
sand markers (for example, REF. 3). Experimental popula-
tions were generally limited to simple crosses between 
two parents; more elaborate study designs that might 
provide an assessment of the genomic distribution of 
agronomically important mutations and their frequency 
in the relevant germplasm were proscribed by limits on 
marker technologies and the analytical approaches that 
could be used to distinguish the contribution of multiple 
parents. Comparative approaches for the identification 
of functionally important mutations based on analysis of 
marker frequency among populations had also been pro-
posed4, but the high variance in expected allele frequency 
between populations5 made the discovery of function-
ally important variants among the high number of loci  
surveyed highly improbable.

A reference genome is now available for a number of 
crops (FIG. 1), and progress is being made towards refer-
ences for crops with large genomes6 (for example, see 
links in Further information). In addition, reference 
genomes have been published for a number of other 
model plant systems, including Arabidopsis thaliana 

and Brachypodium distachyon7,8. Comparative genom-
ics — which is traditionally thought of as the analysis 
of synteny (gene order) and sequence comparisons 
among related species — is now being redefined by 
the rapid publication of increasing numbers of refer-
ence genomes, by estimation of sequence diversity from 
high-throughput resequencing, by the examination of 
the genomic distribution of large insertions and dele-
tions (indels) and copy number variants (CNVs) and 
by the emergence of a new generation of experimental 
and computational approaches. From genetic mapping 
to evolutionary analysis, the future of crop improve-
ment will revolve around the comparisons of individual 
plant genomes. Maximizing the use of this genomic data 
for crop improvement is of fundamental importance if 
we are to continue increasing crop production in the 
face of growing human populations and changing cli-
mates while minimizing the environmental impact of  
agricultural activity.

 In this Review, we begin by addressing the chal-
lenges for comparative crop genomics that are posed by 
the complex organization of plant genomes and the high 
levels of nucleotide and structural diversity that are found 
in many crop species. We then discuss the importance of 
understanding domestication, as the origin and demog-
raphy of a crop affect the genetic basis of agronomic traits 
and influence patterns of nucleotide diversity genome-
wide. We examine the ways in which our understanding 
of the genetics of agronomic traits is being fundamentally 
reshaped by genomic data. High-density genetic markers 
are being used in genome-wide association studies (GWASs)  
and can also be exploited for genomic selection. 
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Genome-wide association 
studies
(GWASs). Studies that search 
for a statistical association 
between a phenotype and  
a particular allele by screening 
loci (most commonly by 
genotyping SNPs) across  
the entire genome.

Crop genomics: advances  
and applications
Peter L. Morrell1, Edward S. Buckler2 and Jeffrey Ross-Ibarra3

Abstract | The completion of reference genome sequences for many important crops and 
the ability to perform high-throughput resequencing are providing opportunities for 
improving our understanding of the history of plant domestication and to accelerate 
crop improvement. Crop plant comparative genomics is being transformed by these data 
and a new generation of experimental and computational approaches. The future of 
crop improvement will be centred on comparisons of individual plant genomes, and 
some of the best opportunities may lie in using combinations of new genetic mapping 
strategies and evolutionary analyses to direct and optimize the discovery and use of 
genetic variation. Here we review such strategies and insights that are emerging.
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• Goal 1: Improve Utility of Genome 
Sequence

• Improve bioinformatics resources - 
practical applications

• Goal 2: Translational Genomics - Optimize 
Breeding Efficiency

Soybean Genomics 
Strategic Plan

Boerma et al. 2011
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Topics

• Next generation 
populations

• Selection against 
deleterious mutations

• Applications of genome-
wide SNP data
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Observational 
Astronomy

•Information about places we 
won’t ever visit
•The visible portion of the 
electromagnetic spectrum is 
only a fraction of what exists
•DNA resequencing data latent 
with information about the past
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DNA Resequencing

• Most direct measure of 
genetic diversity

• Can assay all heritable 
variation

• Can now be collected 
very rapidly
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Genome Size

Nature Reviews | Genetics
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Figure 1 | Crop genome size. Genome size of all published crop genomes (shown in green) and the five most 
important production crops with unpublished genome sequences (shown in blue). The average angiosperm genome 
size of ~6 Gb is shown by the dotted line for comparison.

Paralogy 
Unlike orthologous genes, 
which trace their common 
origin to a locus in an ancestral 
species, paralogous loci consist 
of gene copies that trace their 
common origin to a duplication 
event within a genome. 

Linkage disequilibrium
(LD). Nonrandom association 
of alleles at two or more loci. 
The pattern and extent of LD  
in a genomic region is affected  
by mutation, recombination, 
genetic drift, natural selection 
and demographic history.

Understanding of agronomic traits is also being improved 
by a new generation of multiparent genetic mapping pop-
ulations (or next-generation populations). As we discuss, 
higher-throughput resequencing and marker genotyping 
will also enable new approaches towards crop improve-
ment, such as the identification and selective elimination 
of deleterious mutations.

Challenges of plant genomes
The genomic tools that are applied to plants are often 
developed for and tested against data from humans or 
other model systems, such as fruitflies or mice9,10, but 
the size and dynamic nature of plant genomes adds to 
or exacerbates challenges that are faced in other systems 
(FIG. 1). Plants tend to have a larger number of multi-
gene families11 and a higher frequency of polyploidy 
than occurs in mammals. This makes paralogy a more 
substantive issue because the short sequence reads 
that are typical of high-throughput sequencing may 
not map uniquely to a reference genome, and allelic 
variation cannot then be distinguished from differences 
among closely related gene family members (FIG. 2).  
Paralogy remains a problem even in plant species that 
have a high-quality reference genome owing to the 
prevalence of extensive copy number variation12,13. For 
instance, estimates suggest that the maize reference 
genome accounts for only ~70% of the low-copy-number  
sequences that are present in the parents of a diverse set 
of maize inbreds and that this copy number variation 
leads to a high percentage of false-positive variants14. It 
seems likely that continued improvement in sequence 
read length, along with methodological approaches that 
assess allelic segregation among lines14 and that make 

use of local patterns of linkage disequilibrium (LD), will 
be useful for identifying paralogous reads in complex 
crop genomes. Although there may be no simple solu-
tion to the complexity of polyploid genomes, sequencing 
diploid relatives15,16 or double haploid lines17 can provide 
a baseline for future genome-level research in polyploid 
crops. 

The high levels of nucleotide diversity in some crop 
genomes pose a challenge for comparative analyses, as 
higher numbers of mismatches between a sample and 
a reference will result in reduced sequence read map-
ping (FIG. 2) or reduced hybridization to oligonucleotide 
arrays. For example, the maize and human genomes are 
similar in size, but an average pair of maize individuals  
differs at tenfold more sites than any two humans 
do18. Although many crops do not have high levels of 
diversity, the difficulties of a diverse genome are not 
unique to maize as an outcrossing species: diversity is 
also high in the clonally propagated grape19 and even in  
self-fertilizing (‘selfing’) species, such as barley20.

Another challenge in plant comparative genomics is 
genome size (FIG. 1). Plant genome size varies by more 
than three orders of magnitude in currently character-
ized species21, largely owing to the prevalence of trans-
posable elements22. Size alone makes genomic analysis 
more difficult: shotgun sequencing reads that are suf-
ficient to provide deep (25×) coverage of four Drosophila 
melanogaster genomes — enabling the identification of 
heterozygous sites and structural variation — would pro-
vide a meagre ~1× coverage of the wheat genome. The 
density of transposable elements in plant genomes also 
means that a large fraction of shotgun sequencing data 
is of limited use for reference-based genomic analysis, as 
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Short Read Mapping

Morrell et al. 2012

Nature Reviews | Genetics
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Figure 2 | Challenges of read mapping in plant genomes. The mapping of short 
sequence reads to a reference plant genome is shown with the genome at the bottom 
and with sequencing reads above. Coloured shapes represent transposable elements 
or genes; the two orange ovals represent a pair of paralogous genes. Short sequence 
reads are shown directly above where they would map to the reference. Different 
scenarios are shown in lines a–e. a | Uniquely mapping reads, including junctions 
between sequence repeats. b | A sequence from a diverse genome that would fail to 
map to the reference owing to an excess of SNP differences. c | A read from one 
paralogue that maps incorrectly owing to a sequence error or a SNP. The correct 
mapping is shown with a grey read. d | Reads that would map multiply and are usually 
filtered from further analysis. e | A read from a third copy of the orange gene that is 
incorrectly mapped to one of the reference copies, leading to a false SNP. This is likely 
to be the result of a copy number variant that was not included in the reference 
genome (as indicated by the question mark).

Bottleneck
A temporary marked reduction 
in population size.

Site frequency spectrum
The distribution of allele 
frequencies in a population: 
essentially a count of the 
number of alleles in a 
population at a given 
frequency.

Genetic drift
Fluctuations in allele 
frequencies that are due to the 
effects of random sampling.

Admixture
The mixing of two or more 
genetically differentiated 
populations. 

Introgression
The incorporation of genetic 
material from one population 
or species into another by 
hybridization and backcrossing.

Haplotype
The combination of alleles  
or genetic markers found  
on a single chromosome  
of an individual.

reads map with equal probability to multiple positions 
in the reference (FIG. 2). It is not surprising that the crop 
genomes that have been sequenced to date have all been 
relatively small — the largest crop genome sequenced, 
maize, is less than half the size of the average angiosperm 
genome (FIG. 1; TABLE 1).

Although plant genomes pose a number of challenges 
for genomic analysis, they do offer some advantages. 
Unlike most animals, crops can be propagated clonally 
or maintained as inbred lines, and the seeds of many spe-
cies can be stored indefinitely, which effectively immor-
talizes genotypes of interest. This makes it possible to 
sequence a line once but to phenotype the line many 
times, and it allows replication across environments23. 
Inbred lines or specially created double haploids also 
avoid the difficulties of sequencing highly heterozygous 
genomes. Sequencing of the grape genome has provided 
a useful comparison of the advantages and difficulties 
of sequencing a diploid outcrossing accession13 or an 
inbred line24.

Origin and evolution of crops
Understanding the origins and domestication of crop 
plants is of substantial evolutionary interest, as domesti-
cated plants provide a model system for studying adapta-
tion25,26. An understanding of crop origins has long been 
held as central to the identification of useful genetic 
resources for crop improvement27. Domestication shapes 
the genetic variation that is available to modern breed-
ers as it influences levels of nucleotide diversity and 
patterns of LD genome-wide. The demographic his-
tory of domestication also informs our expectations of 
the genetic architecture of traits and thus our ability to  
identify causal genetic variants for crop improvement.

Demographic history and geographic origins. 
Genome-wide polymorphisms make it possible to 
examine the demographic history and geographic 
origins of crops. Domestication is an evolutionarily 
recent phenomenon, and most of the genealogical 
history at any locus will be shared between a domesti-
cate and its wild progenitor28. Comparisons of alleles 
within and between domesticated and wild taxa will 
reveal divergence times that greatly predate the origin 
of the cultivated form29,30, reflecting the time to most 
recent common ancestor of the species rather than 
the time of divergence of the domesticate. A detailed 
understanding of domestication history requires a 
large number of loci in conjunction with modelling 
of population demography. Some of the earliest work 
on demographic modelling in plants used mean pat-
terns of genetic diversity to fit a bottleneck model of 
domestication31, an approach that was later extended 
to include an explicit likelihood framework32,33. More 
recently, investigators have used methods that incor-
porate more detailed information, such as the site 
frequency spectrum34,35, to distinguish among different 
evolutionary models. 

One of the most fundamental issues that influ-
ences the genetic architecture of agronomic traits and 
the levels of genetic diversity in crop genomes is the 
number of times that a species has been domesticated. 
There are compelling examples for both single domes-
tications (such as maize and soybeans)36,37 and multiple 
domestications (such as avocados, common beans and 
barley)38–40, but the number and location of domestica-
tion events for most crops remain unresolved. Simple 
statistical methods that cluster individuals or popula-
tions based on genetic diversity within the domesticate 
can be misleading, as the number of genetic groupings 
is not necessarily reflective of domestication history41,42. 
For example, although genetic evidence suggests two 
domestications of the common bean39, genetic drift in 
cultivated populations leads to the identification of  
multiple genetic groups43.

The details of even the simplest of domestication sce-
narios are likely to be complex. For example, geograph-
ical spread of the domesticate followed by admixture 
with wild relatives can obscure geographic origins44,45. 
Extensive admixture may be one explanation for  
the continued controversy regarding the origins of  
the domesticated indica and japonica subspecies of rice. 
Analyses from recent genome-wide resequencing have 
failed to reach a consensus on the number of domesti-
cations of rice: modelling of genetic differentiation sup-
ports separate domestications followed by introgression  
at agronomically important loci46, whereas the site 
frequency spectrum and phylogenetic analysis of mul-
tiple data sets argue for a single origin35. As whole-
genome data become available for more crops and 
their wild relatives, application of methods that make 
better use of additional information from detailed 
haplotype structure and patterns of admixture across 
the genome (for example, REFS 47,48) will improve 
insight into the complex demographic histories of  
many crops.
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Molecular Population 
Genetics
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Derived Site Frequency 
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QTL & SNP Frequency

hypotheses (>90% power for 1-day effect even in
single-family analysis). Most QTLs were shared
among multiple families (Fig. 4B), with many

QTLs showing effects among seven to eight
families (30% frequency). Our data partially sup-
port the common gene hypothesis for flowering-

time genetic architecture, which proposes that
variation at common loci causes phenotypic
variation across different families. This result is
striking because the sharing of QTLs across
families contrasts with the high frequency of rare
single-nucleotide polymorphisms (SNPs) inmaize
(Fig. 4B). This discrepancy cannot be due to bias
in detecting QTLs of modest frequency for sev-
eral reasons. (i) Although lower than that for
common QTLs, our design provides enough
power to detect QTLs segregating in two to four
families; nevertheless, we observed few QTLs
distributed in this way. (ii) NAM can statistically
detect QTLs unique to B73 (common QTLs in
this reference design, but rare QTL alleles in the
species). However, only 1% of the QTLs were
found in 17 or more families compared with 10%
of the SNPs. (iii) Additional QTLs can be iden-
tified within individual families, but when they
were added to the joint family analysis models,
they showed significant effects in additional fami-
lies. And (iv), retesting the final joint population
QTLs model by jackknifing the families (leaving
one or two families out sequentially) resulted in
reduced significance for some of the QTLs, but
none became insignificant.

Although many QTLs appear to be shared
across families, we also found evidence for
allelic series at most loci. Because our founders
were crossed to a common reference line, we
tested for and observed allelic series, including
both positive and negative effects, at the same
locus for 69 to 72% of the QTLs (Fig. 4A),
depending on the trait. Such allelic series have
previously been observed in maize (27). Al-
though rare alleles dispersed across multiple
tightly linked QTLs may also be misclassified
as an allelic series in some cases, our association
analysis suggests an allelic series for flowering-
time effects at vgt1 (below). Our results sug-
gest a model of common genes with uncommon
variants controlling flowering to explain our ob-
servation of a relatively small number of QTLs
(e.g., <100), with many functionally distinct
alleles at each locus, each occurring at low fre-
quency. GWAS studies and fine-mapping mul-
tiple alleles per QTL will be needed to test this
hypothesis.

Genes underlying this architecture. To eval-
uate the power and reliability of NAM, we

Fig. 3. (A) Ratio of genetic variance to genotype by
environmental variance by trait. All traits were
dominated by genetic variance, but Q×E was more
important for ASI. (B) Parental flowering can be
predicted well from the NAM QTL estimates. All
significant QTL effects (P < 0.05) for DS were
summed and added to observed B73 flowering to
predict parental flowering. A consistent underes-
timate of the slope is likely because of epistasis. The
fit increased when nonsignificant alleles were in-
cluded to R2 = 0.95.

Fig. 4. (A) Heat map for DS QTL effects by chromosomal position and allele donor. Of the QTLs,
69% had both positive and negative effects relative to B73, which suggests that allelic series are
important for maize flowering-time variation. The QTLs and population were clustered and sorted
to show maximal population differentiation of QTLs and lines. Although some QTLs certainly are
more common in tropical or temperate lines, no QTL sharply defined these differences. (B) The
distribution of QTLs and SNPs across families was extremely different, with biases toward QTLs of
intermediate frequencies. The QTL and SNP frequency among the NAM families for the three
combined traits (DA, DS, and ASI) showed similar distributions. The SNP line indicates the observed
frequency of SNP differences from a set 3641 SNPs identified through sequencing these lines.

www.sciencemag.org SCIENCE VOL 325 7 AUGUST 2009 717
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Next Generation 
Populations

• Where are mutations that control 
quantitative variation?

• How large an effect do they have?

• What is their frequency in the population?
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QTL Mapping

• Quantitative Trait Locus 
mapping

• Progeny segregating for 
portions of the parental 
genomes

• Statistical test of 
association between 
genotype and phenotype

F1

F2

A B
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Association Mapping
• Statistical association 

between SNPs and 
phenotype

• Generally assumes 
common disease (trait) 
common variant

• Fails under selection 
mutation balance

• Constant flux of rare 
causative mutations
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Assumptions

• Future Resources - Next Generation

• Reference genome sequences and fully 
resequence genomes for all major crops

• 105 - 106 SNPs will be available for 
inexpensive genotyping in most crops
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Multiparent QTL

• Multiple parental lines; 
multiple generations

• Similar to barley 
composite crosses from 
1920’s

• Arabidopsis MAGIC 
populations

• Drosophila synthetic

Macdonald & Long 2007
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Mating Designs

one breakpoint or none in each gametic chromosome.
This meiotic mechanism corresponds to 50-cM chro-
mosomes with total interference. Each chromosome
was tracked as a string of 10,000 markers, all differing
between the parental lines. To generate F2 individuals,
we simulated meiosis in F1 individuals heterozygous for
the 10,000markers and drew two gametes randomly. We
then considered eight breeding designs, illustrated in
Figure 1, as well as a backcross population, in which each
individual was represented by a chromosome drawn at
random from a simulated F2 genome. We used the
backcross rather than an F2 population as a baseline for
our results because it has, like an inbred line popula-
tion, only two genotypes per marker. Every cross design
was simulated 1000 times to yield distributions of eval-
uation statistics.

Breeding designs: We confine our attention to breed-
ing designs with discrete, nonoverlapping generations
and constant population size.We simulated the following
eight breeding designs.

1. RIL: Recombinant inbred lines by selfing. Each F2
individual capable of selfing (i.e., hermaphrodites,
N/2 individuals) produced two gametes by indepen-
dent meioses and these two chromosomes formed
the genotype of an F3 individual. We simulated 10
generations of selfing and considered chromosomes
from the final generation. This inbreeding phase is
shared by all the RIAIL breeding designs below.

2. CM–RIAIL: Circular mating. F2 males and hermaph-
rodites alternate around a circle, and each individual
mates with each of its neighbors, according to

Figure 1.—Mating schemes. Each mating scheme is represented in the M-matrix format of Boucher and Nagylaki (1988) and
as a three-generation pedigree. In the M matrix, each row represents a progeny of the parental generation represented by the
columns. Entry mij is the number of gametes from individual j contributing to the zygote of individual i. Row totals are always 2. In
the regular-mating schemes (left), the matrix is fixed from generation to generation, while in random schemes (right) it is a
random realization each generation. Some schemes have zero variance in offspring number (equal contributions), so that column
totals are also constrained to equal 2. In the pair mating schemes, each column must share all entries with another. In the ped-
igrees, hermaphrodites are circles, males are squares, and the lines depict parent–offspring relationships. For the random-mating
schemes, the M matrix corresponds to the relationships depicted in the first two generations of the pedigree.

Recombinant Inbred Advanced Intercross Lines 1071

Rockman & Kruglyak 2008
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Multiparent Population

Macdonald & Long 2007
pB ¼ 4.6). Markers used solely for fine mapping were
slightly more informative (5.0 unique haplotypes per
marker on average) than those used solely for coarse
mapping (4.1 haplotypes). The increase in informative-
ness for the fine-mapping markers is due to those used
to map the region in the middle of the X chromosome
(X-middle markers average 5.4 haplotypes, while X-tip
markers average 4.1). Contrary to our intuition the num-
ber of distinguishable haplotypes in the founders was
not strongly a function of how SNPs were ascertained:
Markers developed by sequencing the actual founders,
where SNPs were chosen to maximize within-marker
haplotype diversity, yielded 4.7 haplotypes per popula-
tion on average. Markers harvested from published
sequencing surveys, where SNPs were simply chosen to
have high frequency and little LD with other SNPs in the
same fragment, showed similar haplotype diversity in
our founders (4.3 haplotypes per population).

The inbred founder lines used to derive the synthetic
populations are not isogenic, and 28/384 (7.3%) inde-
pendent marker/founder combinations show heterozy-
gosity. The heterozygosity is not localized to any particular
marker as 17/24 markers show at least one heterozygous
line. Half of the 16 founders show no evidence for he-
terozygosity, while 3 of the lines (A1, B3, and B7) are
heterozygous at multiple amplicons. This trio of lines
collectively contributes to 23/28 (82.1%) of the hetero-
zygous marker/founder combinations, implying they
are less well inbred than the remaining 13 lines. It is of
interest that all 16 founder lines were maintained in stock
centers at small effective population sizes for .40 years
(without being contaminated by P-element-harboring
flies). The observation that these lines are not completely
homozygous suggests a relatively high rate of tightly
linked deleterious alleles in trans.

The HMM employs the genotype data to infer (for
every individual and every position) the probability that
the chromosomal segment is derived from each of the

eight founders. Founder assignment becomes more
accurate as the information level in the genotype data
increases. We can visualize spatial variation in the infor-
mation level by color coding (by founder of origin) those
chromosomal segments inferred to come from a single
founder with a probability .75%. Figure 3 depicts this
information for 40 typical males from the pBr1 popu-
lation. Colored blocks represent highly likely founders,
and the information content at any position can be
loosely assessed by the amount of white space (i.e., where
the probability was ,0.75 for all eight founders). For the
coarse-mapping scan, information is generally high at
the markers, with the obvious exception of marker or.84
(third marker from the right), where only two haplo-
types are distinguishable among the eight pB founders.
Overall, there appears to be greater information in the
fine-mapping population. One exception is the region
around marker no.01 (fourth from the left) at the tip of
X chromosome. This is likely due to its low marker in-
formativeness (just three haplotypes are distinguishable
at no.01 in pB), and because it is relatively distant from
either of the flanking markers. We note that the relative
size of nonrecombinant fragments is consistent with
their expectation given the number of generations the
populations experienced recombination/drift. Finally,
with reduced information and/or a poorly performing
HMM we may expect the most likely founder to ‘‘flip-
flop’’ frequently along the chromosome, and this does
not appear generally the case.

We can examine marker informativeness more quan-
titatively using the measure H to estimate the propor-
tion of missing genotypic information (H¼ 0, complete
information; H ¼ 1, no information). Figure 4, E and F,
and Figure 5, E and F, present the amount of missing
information across the three mapped regions (the entire
X chromosome for the coarse-mapping scan, and two
smaller regions of the X for the fine-mapping scans). It is
easy to see that at the markers themselves the amount of

Figure 3.—Visual representation of genotyping
information. Each row of each plot represents a
single experimental male, for which the X chromo-
some is derived from the pBr1 synthetic recombi-
nant population. The top plot shows 40 flies from
the coarse-mapping sample for the entire X chromo-
some, and the bottom two plots show 40 flies from
the two small fine-mapped regions of the X chromo-
some. For each male, every 1 cM (on the expanded
genetic map) across the mapped region we examine
the probability that the segment of chromosome is
derived from each of the eight possible founder
lines. If the probability for any one founder is
.0.75, the position is colored according to the foun-
der (colors are as in Figures 1 and 2); otherwise the
position is white. Marker positions are shown be-
neath each plot as solid triangles. Markers used for
both the coarse mapping andtheX-tip finemapping
are indicated with plus symbols (1), while markers
used for both coarse mapping and the X-middle fine
mapping are indicated with cross symbols (3).
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Multiparent QTL
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Allelic Effects

explained by QTL4 is 1.9% (95% confidence interval,
0.84–3.22%). Similarly, QTL5 explains 4.1% (1.26–8.11%)
of male SBN variation. Notwithstanding Beavis effects
(Beavis 1994), our data imply these QTL contribute
2–4% to the total variation for bristle number in our
mapping panel.

Given that QTL4 and QTL5 reside in very small, and
overlapping intervals one might conclude that we have
mapped a single pleiotropic QTL contributing to varia-
tion in both male ABN and male SBN. Figure 6 (D and E)
shows this is not the case. The rare low allele for QTL4
is present in line B5, while the rare high allele for QTL5

Figure 6.—Estimated phenotypic means for each of the founder chromosomes at QTL. Each plot represents a single male
bristle number QTL (see Figure 5 and Tables 4 and 5 for details) and shows the estimated phenotypic mean (standard error)
at the QTL peak for each of the eight lines used to found the particular synthetic population. The line numbers, A1–A8 and
B1–B8, refer to the lines described in Table 1. For comparison the means estimated at the QTL peak are presented for both
the coarse- (open bars) and fine-mapping (shaded bars) panels. Bars are presented only if the estimated number of experimental
individuals consistent with having a given founder chromosome is .10; otherwise a cross is plotted. Below the bars we give the
most probable QTL allele harbored by the founder (L, low allele; H, high allele), under the assumption that the QTL is biallelic. If
the founder cannot be confidently (probability . 0.95) assigned an allele, a ? is applied. (A) QTL1 for pA male SBN mapped to the
X-tip region in population pAr1, (B) QTL2 for pB male SBN mapped to the X-tip region in pBr112 (coarse mapping) and pBr1
(fine mapping), and (C) QTL3 for pB male SBN mapped to the X-tip region in pBr112 (coarse mapping) and pBr1 (fine map-
ping). The coarse-mapping information for QTL2 and QTL3 is identical, as these are the two fine-mapped QTL we detected
under a single coarse-mapped peak. (D) QTL4 for pB male ABN mapped to the X-middle region in pBr112 (coarse mapping)
and pBr1 (fine mapping), and (E) QTL5 for pB male SBN mapped to the X-middle region in pBr112 (coarse mapping) and pBr1
(fine mapping).
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Deleterious Mutations

• An mutation that reduces fitness or viability 
(yield)

• Premature stop codons, insertions/
deletions, splice site variants

• Amino acid changes

• Cis-acting regulatory factors

• 100s to 1000s per genome in humans
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Deleterious Mutations

Morrell et al. 2012

Box 1 | Genetic load

Genetic load refers to the reduction in fitness caused by suboptimal genotypes in a population121. Genetic load can 
arise in a number of ways, including directional selection, recombination or mutation. Mutational load — the 
presence of deleterious mutations segregating in a population — is of particular interest for crop genomics. 
Deleterious mutations are most readily detected in protein-coding genes and can take several forms, including 
premature stop codons, splice site variants or insertions and deletions (indels) that result in the loss or impairment 
of protein function. These types of mutations are frequently associated with Mendelian disorders in humans, 
providing direct evidence that loss-of-function changes tend to be deleterious, particularly when homozygous122. 
Although most nonsynonymous mutations in plants are strongly deleterious, a sizable proportion are only slightly 
so, and these mutations may segregate at appreciable frequencies123.

 Unambiguously deleterious mutations are fairly common in crop genomes17,54,124. Statistical analysis of 
homologous sequence from multiple genomes can identify amino acid changes that are likely to be disadvantageous 
(for example, REF. 125), but these comparative analyses benefit from transcriptomic data, as transcript variation 
among individuals may render some putatively deleterious mutations inconsequential120. Part a of the figure shows  
a hypothetical alignment of coding sequence from multiple grass species. The conserved nature of the histidine 
amino acid across species suggests that the nonsynonymous change (indicated by the red ‘G’) observed in maize is 
likely to be deleterious. Synonymous changes are shown in black.

Selection against deleterious mutations is hindered by Hill–Robertson effects — because of linkage, selection can 
only act on the net effect of both beneficial and deleterious mutations. Deleterious mutations should thus be 
enriched in regions of the genome in which recombination is suppressed and around the targets of strong positive 
selection126,127. Although neither prediction has yet been explicitly demonstrated in crops, patterns of residual 
heterozygosity in the maize genome support the first prediction14, and evidence from humans128 bears out the 
second. Whereas inbreeding can act to purge deleterious mutations129,130, drift can increase the frequency of 
deleterious mutations in small populations131,132. Drift is a stochastic process, and unique sets of deleterious alleles 
would be expected to increase in frequency in different breeding populations (for example, REF. 124). This is 
illustrated in part b of the figure, in which two nonsynonymous mutations (indicated by the red ‘A’s) in the  
ancestral population increase in frequency in two derived populations. Because drift operates independently  
in isolated populations, different breeding programs are likely to have a number of distinct, high-frequency 
deleterious mutations. Given that most deleterious mutations are at least partially recessive, crosses between lines 
from different breeding populations should exhibit complementation at these loci, explaining, at least in part,  
the widespread observation of heterosis.

Nature Reviews | Genetics
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Deleterious vs. Lethal

• Lethal mutations - quickly purged upon 
inbreeding

• Deleterious mutations - modest frequency

• Can reaching higher frequencies due to 
linkage drag or ‘allelic surfing’

• Harbored in genomic regions with low 
recombination rate
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Recombination Rate

Gore et al. 2009
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In Breeding Populations
Box 1 | Genetic load

Genetic load refers to the reduction in fitness caused by suboptimal genotypes in a population121. Genetic load can 
arise in a number of ways, including directional selection, recombination or mutation. Mutational load — the 
presence of deleterious mutations segregating in a population — is of particular interest for crop genomics. 
Deleterious mutations are most readily detected in protein-coding genes and can take several forms, including 
premature stop codons, splice site variants or insertions and deletions (indels) that result in the loss or impairment 
of protein function. These types of mutations are frequently associated with Mendelian disorders in humans, 
providing direct evidence that loss-of-function changes tend to be deleterious, particularly when homozygous122. 
Although most nonsynonymous mutations in plants are strongly deleterious, a sizable proportion are only slightly 
so, and these mutations may segregate at appreciable frequencies123.

 Unambiguously deleterious mutations are fairly common in crop genomes17,54,124. Statistical analysis of 
homologous sequence from multiple genomes can identify amino acid changes that are likely to be disadvantageous 
(for example, REF. 125), but these comparative analyses benefit from transcriptomic data, as transcript variation 
among individuals may render some putatively deleterious mutations inconsequential120. Part a of the figure shows  
a hypothetical alignment of coding sequence from multiple grass species. The conserved nature of the histidine 
amino acid across species suggests that the nonsynonymous change (indicated by the red ‘G’) observed in maize is 
likely to be deleterious. Synonymous changes are shown in black.

Selection against deleterious mutations is hindered by Hill–Robertson effects — because of linkage, selection can 
only act on the net effect of both beneficial and deleterious mutations. Deleterious mutations should thus be 
enriched in regions of the genome in which recombination is suppressed and around the targets of strong positive 
selection126,127. Although neither prediction has yet been explicitly demonstrated in crops, patterns of residual 
heterozygosity in the maize genome support the first prediction14, and evidence from humans128 bears out the 
second. Whereas inbreeding can act to purge deleterious mutations129,130, drift can increase the frequency of 
deleterious mutations in small populations131,132. Drift is a stochastic process, and unique sets of deleterious alleles 
would be expected to increase in frequency in different breeding populations (for example, REF. 124). This is 
illustrated in part b of the figure, in which two nonsynonymous mutations (indicated by the red ‘A’s) in the  
ancestral population increase in frequency in two derived populations. Because drift operates independently  
in isolated populations, different breeding programs are likely to have a number of distinct, high-frequency 
deleterious mutations. Given that most deleterious mutations are at least partially recessive, crosses between lines 
from different breeding populations should exhibit complementation at these loci, explaining, at least in part,  
the widespread observation of heterosis.
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Relevance to Crops

• The potential to purge deleterious 
mutations is related to population size

• Many breeding programs have very small 
effective size

• Biggest diminution in fitness when 
deleterious mutations are homozygous

• Barley, soybeans, and wheat...
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Applications 

• ‘Reverse genomic selection’ against 
deleterious mutation could improve yield

• Deleterious changes in genes that aren’t 
directly associated to traits

• Targeted recombination - purge deleterious 
changes
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5 years 

4 years 

Genomic selectionStandard breeding 

Nature Reviews | Genetics
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The model

Box 2 | Genomic selection

Genomic selection is a form of indexed, marker-assisted selection in which a marker data set is used to make phenotypic 
predictions133,134. Genomic selection and genome-wide association studies (GWASs) can use the same genotypic and 
phenotypic data, but genomic selection models de-emphasize the identification of individual polymorphisms that 
control complex traits in favour of weighted prediction of phenotypic values based on a training data set. Like GWASs, 
genomic selection has traditionally been limited by the cost and availability of dense genome-wide marker data, but 
recent developments in high-throughput genotyping allow for inexpensive genome-wide marker data to be rapidly 
collected in large numbers for even non-model taxa135,136.

The key to genomic selection is the creation of training sets that have sufficient genetic and phenotypic diversity to 
permit selection to be applied in a meaningful way. Although most genomic selection has focused on rather narrow 
breeding efforts within one breeding programme137, the long-term goal should be to produce models that encompass the 
worldwide diversity of a species, incorporating information on phenotype and performance in numerous environments. 
The details of genomic selection models are likely to vary by species and by breeding programme, and factors such as the 
genetic architecture of a trait will also be important in structuring the equations and priors of genomic selection models. 
Although trait architecture will undoubtedly differ among species, there also appear to be generalities that are worth 
predicting: for example, comparisons of flowering time between Arabidopsis thaliana and maize138.

It is expected that genomic selection will revolutionize breeding in the next decade. The figure describes the breeding 
cycle that is common to maize in the twentieth century compared to a hypothetical breeding cycle that implements 
genomic selection. Whereas cultivar and hybrid trials and release in such a scenario would still take considerable time 

�|[GCTU���VJG�VKOG�DGVYGGP�E[ENGU�QH�ETQUUKPI�EQWNF�DG�WR�VQ����VKOGU�HCUVGT�
�|OQPVJU�XGTUWU��|[GCTU��WUKPI�IGPQOKE�
selection to choose lines for continued breeding. For example, although maize breeding and agronomy in the last 
EGPVWT[�YGTG�VTGOGPFQWUN[�UWEEGUUHWN�CPF�KPETGCUGF�[KGNF�PGCTN[�GKIJVHQNF�KP���|[GCTU�
US Department of Agriculture 
(USDA) National Agricultural Statistics Service)139, adaptive evolution still occurred fairly slowly. Crosses, 
recombination and opportunities for allele frequency change only occurred every 5 or more years, and as much as half 
of the yield gain came from improved management practices140. 

Today, genomic selection efficiency falls far short of the goal suggested in the figure — its accuracy is limited by 
inefficiencies in the prediction of phenotype from genotype. In spite of these issues, current genomic selection methods 
CTG�NKMGN[�VQ�DG��s��VKOGU�HCUVGT�VJCP�VJG�VTCFKVKQPCN�DTGGFKPI�E[ENG�|#�EQPVKPWKPI�IQCN�QH�ETQR�IGPGVKEU�CPF�DTGGFKPI�
should be to improve methods of connecting phenotype to genotype — ideally, genomic selection will become 
indistinguishable from GWASs — until the pace of improvement is only limited by the biology of the species.

that may substantially enrich and accelerate the search 
for useful variation. Clegg100 pointed to three major areas 
of focus in evolutionary genetics that each have impor-
tant implications for plant breeding — the genetic basis 
of adaptation, the quantification of variation and the  
processes of genetic transmission. 

Adaptation. The identification of loci that are respon-
sible for adaptive evolution has long been a goal in 
evolutionary genetics (for example, REF. 4), and many 
of the approaches developed in the field (reviewed in  
REFS 101,102) are directly transferable to the identification  
of loci of agronomic interest103.
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Genome Level Analysis

• Extended linkage disequilibrium in teosinte

• Genetic provenance of climate adapted 
mutations in barley
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Inversion Evidence

• Decreased 
recombination rate in 
inversion region

• Low haplotype 
numbers for the 
SNPs inside inversion

• High Fst values for 
the SNPs inside 
inversion
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Inversion Frequency
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Association - Altitude
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Wild Barley Diversity 
Collection 

Average 
FST

BOPA1
0.09

BOPA2 
0.13

Sample Sizes - 196, 116

Monday, February 27, 12



Aridity - Western Asia
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FST - Chromosomal

443 SNPs
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Opportunities

• Genomics era has just begun

• Many patterns are easy to find

• SNP metadata ‘data about data’ is very 
important

• Latent with information from places we 
can’t visit!
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